MITTWOCH, DEZEMBER 20, 2023

Dies ist der dritte Teil der QC lab-Serie über Eisschrauben und wird die Diskussion über Schraubplatzierungen und die Leistungsunterschiede zwischen Schrauben aus Aluminium und Stahl fortsetzen. Falls du die ersten beiden Artikel noch nicht gelesen hast, findest du sie hier:

SCREWTRUSION

REBOHREN ALTER EISSCHRAUBEN-LÖCHER

Aluminium ist leichter als Stahl

Als Aluminium-Eisschrauben zum ersten Mal auftauchten, hat der Reiz eines leichteren Sets viele Kletterer dazu gebracht, komplett umzusteigen. Die Gewichtseinsparungen bei einem kompletten Set von 14 Schrauben können bis zu 800 Gramm betragen. Das ist ordentlich Gewicht, vor allem wenn sie an deinem Gurt bei einem steilen und technisch anspruchsvollen Vorstieg hängen oder auf deinem Rücken während eines fünfstündigen Anstiegs getragen werden.

Letztendlich heißt das, du könntest mehr Essen, mehr Ausrüstung oder diesen riesigen Belay-Parka mitbringen, was alles zu mehr Erfolg und weniger Leid führen kann. Aber abgesehen vom Gewicht, was sind die anderen Leistungsunterschiede zwischen Aluminium- und Stahl-Eisschrauben?

Sowohl Aluminium- als auch Stahl-Eisschrauben, 13cm oder länger, sind CE-zertifiziert und erfüllen die EN 568:2015 Radialfestigkeitsanforderung von 10kN (2248 lbf). Obwohl die kurzen 10cm Stahl-Eisschrauben nicht CE-zertifiziert sind, erfüllen sie ebenfalls die 10kN Radialfestigkeitsanforderung. Um das ins rechte Licht zu rücken, stell dir vor, dein Freund Ken wiegt 225lbs, wenn er mit all seiner Ausrüstung unterwegs ist. Eine gut platzierte Eisschraube ist ausgelegt, 10 Kens zu halten. In den meisten realen Klettersituationen ist es schwer, so viel Kraft aufzubringen.

Eisschrauben selbst sind sehr stabil, aber sie verlassen sich auf den Halt des umgebenden Eises, das besonders an der Oberfläche stark variieren kann. Bei einer optimalen Platzierung, bei der die Schraube in einem leicht positiven Winkel eingesetzt wird (Spitze höher als der Hänger) und der Hänger bündig am Eis anliegt, führt eine angreifende Last dazu, dass das Eis um die Schraube herum belastet wird und schließlich versagt. Das Oberflächeneis wird etwa 3 – 5 Zentimeter tief rund um den Schraubenkörper brechen. Sobald das passiert, wird der freiliegende Teil des Schraubenkörpers als Kragarm wirken und vom Eis nicht mehr gestützt. Der nun kragarm wirkende Schraubenkörper, der die Last nicht alleine tragen kann, beginnt sich zu biegen, bis der Hänger vom Kopf abgehoben wird, der Schraubenkörper versagt oder die Schraube sich aus dem Eis löst.

Aluminum is Lighter than Steel

When aluminum ice screws first came onto the scene, the attraction of a lighter weight rack caused many climbers to fully switch over. The weight savings spread across a full rack of 14 screws can be upwards of 800 grams. That is serious weight, especially when it’s hanging off your harness on a steep and technical lead, or on your back for a five-hour approach.

Ultimately this means you could bring more food, more gear, or that huge belay parka, all of which may lead to more success and less suffering. But, other than weight, what are the other performance differences between aluminum and steel ice screws?

Both aluminum and steel ice screws, 13cm or longer, are CE certified and meet the EN 568:2015 10kN (2248 lbf) radial strength requirement. Although the stubby 10cm steel ice screws are not CE certified, they also meet the 10kN radial strength requirement. To put this in perspective, let’s imagine your friend Ken weighs 225lbs when loaded up with all his kit. A well-placed ice screw is rated to hold 10 Kens. It is hard to generate that much force in most real-world climbing scenarios.

Ice screws themselves are very strong, but they rely on the support of the surrounding ice which can be highly variable, especially at the surface. In a textbook placement, with the screw placed at a slightly positive angle (tip higher than the hanger) and the hanger flush to the ice, an applied load will stress the ice surrounding the screw and eventually cause the ice to fail. The surface ice will fracture roughly 3 – 5 centimeters deep surrounding the body of the screw. Once this occurs, the exposed section of the screw body becomes cantilevered and is no longer supported by ice. The now cantilevered screw body, unable to support the load alone, will begin to bend until the hanger is levered off the head, the screw body fails, or the screw pulls out of the ice.

Da die Eisschraube nur so stark ist wie das Eis drumherum, kann es sein, dass du eine Schraube in weniger perfektes Eis setzt und das Eis bei viel geringeren Lasten zusammenbricht und sich kegelförmig abnutzt – was zu einem ungesicherten und freitragenden Schraubenkörper führt. Genau hier machen Material und Geometrie einen großen Unterschied.

Ohne zu sehr ins Detail zu gehen: Stahl hat eine höhere Duktilität und Zähigkeit als das wärmebehandelte Aluminium, das für Eisschrauben verwendet wird. Das bedeutet im Grunde, dass die Stahlschrauben mehr biegen und sich verformen können als Aluminiumschrauben, bevor sie versagen.

Ein offensichtliches Beispiel für die Unterschiede in der Geometrie ist der Durchmesser der Schraubenkörper. Da Aluminium ein schwächeres Material ist, ist der Durchmesser der UL Ice Screw größer, um die erforderliche Festigkeit zu gewährleisten, die nötig ist, um die CE-Anforderungen zu erfüllen. Der größere Durchmesser kann von Vorteil sein, wenn du ihn platzierstnachgebohrte SchraubenEs kann auch das Ausrichten der Löcher erleichtern, wenn du nackte Gewinde bohrst, und die Löcher mit größerem Durchmesser verringern die Wahrscheinlichkeit, dass sich das Seil verhakt, wenn du daran ziehst.

Got it, so what does all this mean?  It means at the end of the day, regardless of what screw you’re using, you want good placements in good ice!

Evaluating Ice

First, search for that nice homogenous, blue, plastic ice. Then, when placing the screw, pay attention to how much torque is required to turn the screw. You will generally feel consistent resistance during a placement in good ice. If you feel any significant reduction in the torque required to drill the screw, you may have hit a weak layer or an air pocket. If it’s taking a little force to turn the screw and that force is consistent all the way until the hanger meets the carefully cleaned surface ice, then we likely have a very good screw. Good screw placements also generally produce a core during placement.

Ice Quality
If the surface has been hit with sun, heat, or has lost density through sublimation (big word for what happened to your ugly white ice cubes in the freezer after a few months) then it is a lot weaker and will fracture more easily which increases the likelihood of relying on a cantilevered screw body. So, make sure to clean any weak surface ice off before placing your ice screw!

Ice Thickness
Gauge the thickness of the ice.  You want to be able to bury the screw to the hanger into good ice without the threads banging into the rock and damaging your screw.  And of course, ideally you don’t want the screw protruding from the ice (see screwtusion).

Wet Ice or Very Cold Ice
Aluminum screws tend to bind more on very cold days, or in ice with layers of different temperatures (really wet ice).

At the end of the day, when faced with the situation of placing an ice screw in sub-optimal ice conditions you should search elsewhere to find a better placement. You may have more buffer with a steel ice screw but relying on ice screws in marginal ice is not a good strategy. Taking the time to get good screw placements is very important! The best option, whether you are using steel or aluminum, is to get down to that nice blue plastic ice we all love to see.

Examples of how to evaluate the quality of ice: